TY - JOUR
T1 - Susceptibility testing of Anopheles malaria vectors with the neonicotinoid insecticide clothianidin; Results from 16 African countries, in preparation for indoor residual spraying with new insecticide formulations
AU - Oxborough, Richard M.
AU - Seyoum, Aklilu
AU - Yihdego, Yemane
AU - Dabire, Roch
AU - Gnanguenon, Virgile
AU - Wat'Senga, Francis
AU - Agossa, Fiacre R.
AU - Yohannes, Gedeon
AU - Coleman, Sylvester
AU - Samdi, Lazarus Musa
AU - Diop, Abdoulaye
AU - Faye, Ousmane
AU - Magesa, Stephen
AU - Manjurano, Alphaxard
AU - Okia, Michael
AU - Alyko, Evelyne
AU - Masendu, Hieronymo
AU - Baber, Ibrahima
AU - Sovi, Arthur
AU - Rakotoson, Jean Desire
AU - Varela, Kenyssony
AU - Abong'O, Bernard
AU - Lucas, Bradford
AU - Fornadel, Christen
AU - Dengela, Dereje
PY - 2019/8/1
Y1 - 2019/8/1
N2 - Background: In 2017, more than 5 million house structures were sprayed through the U.S. President's Malaria Initiative, protecting more than 21 million people in sub-Saharan Africa. New IRS formulations, SumiShield™ 50WG and Fludora Fusion™ WP-SB, became World Health Organization (WHO) prequalified vector control products in 2017 and 2018, respectively. Both formulations contain the neonicotinoid active ingredient, clothianidin. The target site of neonicotinoids represents a novel mode of action for vector control, meaning that cross-resistance through existing mechanisms is less likely. In preparation for rollout of clothianidin formulations as part of national IRS rotation strategies, baseline susceptibility testing was conducted in 16 countries in sub-Saharan Africa. Methods: While work coordinated by the WHO is ongoing to develop a suitable bottle bioassay procedure, there was no published guidance regarding clothianidin susceptibility procedures or diagnostic concentrations. Therefore, a protocol was developed for impregnating filter papers with 2% w/v SumiShield™ 50WG dissolved in distilled water. Susceptibility tests were conducted using insectary-reared reference Anopheles and wild collected malaria vector species. All tests were conducted within 24 h of treating papers, with mortality recorded daily for 7 days, due to the slow-acting nature of clothianidin against mosquitoes. Anopheles gambiae sensu lato (s.l.) adults from wild collected larvae were tested in 14 countries, with wild collected F0 Anopheles funestus s.l. tested in Mozambique and Zambia. Results: One-hundred percent mortality was reached with all susceptible insectary strains and with wild An. gambiae s.l. from all sites in 11 countries. However, tests in at least one location from 5 countries produced mortality below 98%. While this could potentially be a sign of clothianidin resistance, it is more likely that the diagnostic dose or protocol requires further optimization. Repeat testing in 3 sites in Ghana and Zambia, where possible resistance was detected, subsequently produced 100% mortality. Results showed susceptibility to clothianidin in 38 of the 43 sites in sub-Saharan Africa, including malaria vectors with multiple resistance mechanisms to pyrethroids, carbamates and organophosphates. Conclusions: This study provides an interim diagnostic dose of 2% w/v clothianidin on filter papers which can be utilized by National Malaria Control Programmes and research organizations until the WHO concludes multi-centre studies and provides further guidance.
AB - Background: In 2017, more than 5 million house structures were sprayed through the U.S. President's Malaria Initiative, protecting more than 21 million people in sub-Saharan Africa. New IRS formulations, SumiShield™ 50WG and Fludora Fusion™ WP-SB, became World Health Organization (WHO) prequalified vector control products in 2017 and 2018, respectively. Both formulations contain the neonicotinoid active ingredient, clothianidin. The target site of neonicotinoids represents a novel mode of action for vector control, meaning that cross-resistance through existing mechanisms is less likely. In preparation for rollout of clothianidin formulations as part of national IRS rotation strategies, baseline susceptibility testing was conducted in 16 countries in sub-Saharan Africa. Methods: While work coordinated by the WHO is ongoing to develop a suitable bottle bioassay procedure, there was no published guidance regarding clothianidin susceptibility procedures or diagnostic concentrations. Therefore, a protocol was developed for impregnating filter papers with 2% w/v SumiShield™ 50WG dissolved in distilled water. Susceptibility tests were conducted using insectary-reared reference Anopheles and wild collected malaria vector species. All tests were conducted within 24 h of treating papers, with mortality recorded daily for 7 days, due to the slow-acting nature of clothianidin against mosquitoes. Anopheles gambiae sensu lato (s.l.) adults from wild collected larvae were tested in 14 countries, with wild collected F0 Anopheles funestus s.l. tested in Mozambique and Zambia. Results: One-hundred percent mortality was reached with all susceptible insectary strains and with wild An. gambiae s.l. from all sites in 11 countries. However, tests in at least one location from 5 countries produced mortality below 98%. While this could potentially be a sign of clothianidin resistance, it is more likely that the diagnostic dose or protocol requires further optimization. Repeat testing in 3 sites in Ghana and Zambia, where possible resistance was detected, subsequently produced 100% mortality. Results showed susceptibility to clothianidin in 38 of the 43 sites in sub-Saharan Africa, including malaria vectors with multiple resistance mechanisms to pyrethroids, carbamates and organophosphates. Conclusions: This study provides an interim diagnostic dose of 2% w/v clothianidin on filter papers which can be utilized by National Malaria Control Programmes and research organizations until the WHO concludes multi-centre studies and provides further guidance.
KW - Anopheles gambiae
KW - Clothianidin
KW - Diagnostic dose
KW - Fludora Fusion
KW - Indoor residual spraying
KW - Neonicotinoid
KW - SumiShield
KW - WHO susceptibility test
U2 - 10.1186/s12936-019-2888-6
DO - 10.1186/s12936-019-2888-6
M3 - Article
SN - 1475-2875
VL - 18
JO - Malaria Journal
JF - Malaria Journal
IS - 1
M1 - 264
ER -