TY - JOUR
T1 - Resistance to neonicotinoids is associated with metabolic detoxification mechanisms in Anopheles coluzzii from agricultural and urban sites in southern Benin
AU - Tchigossou, Genevieve
AU - Dossou, Camille
AU - Tepa-Yotto, Ghislain
AU - Koto, Massioudou
AU - Atoyebi, Seun Michael
AU - Tossou, Eric
AU - Adanzounon, Danahé
AU - Gouété, Marie
AU - Sina, Haziz
AU - Tchouakui, Magellan
AU - Dione, Michel
AU - Wondji, Charles
AU - Djouaka, Rousseau
PY - 2024/8/2
Y1 - 2024/8/2
N2 - Background: Neonicotinoids are gradually being introduced into malaria vector control due to their mode of action that targets insect nicotinic acetylcholine receptors (nAChRs). However, prior to scaling up novel insecticides, it is important to assess the susceptibility of the mosquito population to this molecule. The present study aimed to determine the susceptibility level of mosquitos collected from agricultural and urban sites against neonicotinoids in Benin.Material and methods: An. gambiae sl. larvae were collected from three urban sites and two agricultural sites in southern Benin. An. gambiae sl. larvae collected from three urban and two agricultural sites in southern Benin were exposed to neonicotinoids (clothianidin, acetamiprid, and imidacloprid) for 1 hour, and mortality rates were monitored from 24h to day 7 post-exposure. After molecular identification of the samples, Taqman assays were used to genotype key pyrethroid-resistant markers, and qPCRs were performed to establish the level of expression of detoxification enzymes in resistant mosquitoes.Results: Overall, resistance to acetamiprid and imidacloprid was observed in the five study sites surveyed whereas full susceptibility was recorded to clothianidin. Anopheles coluzzii was the only species found in all sites. TaqMan genotyping showed a very low presence of key pyrethroid-resistant markers suggesting that metabolic resistance is more implicated in neonicotinoid resistance in Anopheles. coluzzii populations from southern Benin. qPCR performed revealed overexpression of P450 genes (CYP6M2, CYP6P4, CYP6Z1, CYP6Z2, and CYP4G16) and sensory proteins (Sap1, Sap2, and Sap3).Conclusion: This first assessment of neonicotinoid resistance in Benin showed evidence of neonicotinoid resistance in both agricultural and urban areas. However, full susceptibility to clothianidin was observed, showing that this insecticide could be used to enhance the efficacy of control tools. In addition, there is a need of an integrated approach, including coordinated education on pesticide use, to improve the overall management of insecticide resistance in both agricultural and public health sectors.
AB - Background: Neonicotinoids are gradually being introduced into malaria vector control due to their mode of action that targets insect nicotinic acetylcholine receptors (nAChRs). However, prior to scaling up novel insecticides, it is important to assess the susceptibility of the mosquito population to this molecule. The present study aimed to determine the susceptibility level of mosquitos collected from agricultural and urban sites against neonicotinoids in Benin.Material and methods: An. gambiae sl. larvae were collected from three urban sites and two agricultural sites in southern Benin. An. gambiae sl. larvae collected from three urban and two agricultural sites in southern Benin were exposed to neonicotinoids (clothianidin, acetamiprid, and imidacloprid) for 1 hour, and mortality rates were monitored from 24h to day 7 post-exposure. After molecular identification of the samples, Taqman assays were used to genotype key pyrethroid-resistant markers, and qPCRs were performed to establish the level of expression of detoxification enzymes in resistant mosquitoes.Results: Overall, resistance to acetamiprid and imidacloprid was observed in the five study sites surveyed whereas full susceptibility was recorded to clothianidin. Anopheles coluzzii was the only species found in all sites. TaqMan genotyping showed a very low presence of key pyrethroid-resistant markers suggesting that metabolic resistance is more implicated in neonicotinoid resistance in Anopheles. coluzzii populations from southern Benin. qPCR performed revealed overexpression of P450 genes (CYP6M2, CYP6P4, CYP6Z1, CYP6Z2, and CYP4G16) and sensory proteins (Sap1, Sap2, and Sap3).Conclusion: This first assessment of neonicotinoid resistance in Benin showed evidence of neonicotinoid resistance in both agricultural and urban areas. However, full susceptibility to clothianidin was observed, showing that this insecticide could be used to enhance the efficacy of control tools. In addition, there is a need of an integrated approach, including coordinated education on pesticide use, to improve the overall management of insecticide resistance in both agricultural and public health sectors.
KW - agriculture
KW - Anopheles coluzzii
KW - metabolic mechanism
KW - neonicotinoids
KW - resistance
KW - urban
U2 - 10.3389/fitd.2024.1339811
DO - 10.3389/fitd.2024.1339811
M3 - Article
SN - 2673-7515
VL - 5
JO - Frontiers in Tropical Diseases
JF - Frontiers in Tropical Diseases
M1 - 1339811
ER -