Repurposed drugs and their combinations prevent morbidity-inducing dermonecrosis caused by diverse cytotoxic snake venoms

Steven R. Hall, Sean A. Rasmussen, Edouard Crittenden, Charlotte Dawson, Keirah Bartlett, Adam Westhorpe, Laura-Oana Albulescu, Jeroen Kool, José María Gutiérrez, Nick Casewell

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

Morbidity from snakebite envenoming affects approximately 400,000 people annually. Tissue damage at the bite-site often leaves victims with catastrophic life-long injuries and is largely untreatable by current antivenoms. Repurposed small molecule drugs that inhibit specific snake venom toxins show considerable promise for tackling this neglected tropical disease. Using human skin cell assays as an initial model for snakebite-induced dermonecrosis, we show that the drugs 2,3-dimercapto-1-propanesulfonic acid (DMPS), marimastat, and varespladib, alone or in combination, inhibit the cytotoxicity of a broad range of medically important snake venoms. Thereafter, using preclinical mouse models of dermonecrosis, we demonstrate that the dual therapeutic combinations of DMPS or marimastat with varespladib significantly inhibit the dermonecrotic activity of geographically distinct and medically important snake venoms, even when the drug combinations are delivered one hour after envenoming. These findings strongly support the future translation of repurposed drug combinations as broad-spectrum therapeutics for preventing morbidity caused by snakebite.

Original languageEnglish
Article number7812
Pages (from-to)e7812
JournalNature Communications
Volume14
Issue number1
Early online date14 Dec 2023
DOIs
Publication statusPublished - 14 Dec 2023

Fingerprint

Dive into the research topics of 'Repurposed drugs and their combinations prevent morbidity-inducing dermonecrosis caused by diverse cytotoxic snake venoms'. Together they form a unique fingerprint.

Cite this