TY - JOUR
T1 - Rapid ligand fishing for identification of acetylcholinesterase-binding peptides in snake venom reveals new properties of dendrotoxins.
AU - Vanzolini, Kenia Lourenço
AU - Ainsworth, Stuart
AU - Bruyneel, Ben
AU - Herzig, Volker
AU - Seraus, Mitchell G.L.
AU - Somsen, Govert W.
AU - Casewell, Nick
AU - Cass, Quezia Bezerra
AU - Kool, Jeroen
PY - 2018/9/15
Y1 - 2018/9/15
N2 - Acetylcholinesterase (AChE) from Electrophorus electricus (eel) was immobilized on the surface of amino-modified paramagnetic beads to serve as a model for the development, validation and application of a new affinity-based ligand-fishing assay for the discovery of bioactive peptides from complex protein mixtures such as venoms. Nano liquid chromatography-mass spectrometry (nanoLC-MS) was used for the analysis of trapped peptides. Using enzyme-functionalized beads, the ligand-fishing assay was evaluated and optimized using a peptide reference mixture composed of one acetylcholinesterase binder (fasciculin-II) and five non-binders (mambalgin-1, angiotensin-II, bradykinin, cardiotoxin and α-bungarotoxin). As proof of concept, snake venom samples spiked with fasciculin-II demonstrated assay selectivity and sensitivity, fishing the peptide binder from complex venom solutions at concentrations as low as 1.0 μg/mL. As negative controls for method validation, venoms of four different snake species, not known to harbor AChE binding peptides, were screened and no AChE binders were detected. The applicability of the ligand fishing assay was subsequently demonstrated with venom from the black mamba, Jameson's mamba and western green mamba (Dendroaspis spp.), which have previously been reported to contain the AChE binding fasciculins. Unknown peptides (i.e. not fasciculins) with affinity to AChE were recovered from all mamba venoms tested. Tryptic digestion followed by nano-LC-MS analysis of the material recovered from black mamba venom identified the peptide with highest AChE-binding affinity as dendrotoxin-I, a pre-synaptic neurotoxin previously not known to interact with AChE. Co-incubation of AChE with various dendrotoxins in vitro revealed reduced inactivation of AChE activity over time, thus demonstrating that these toxins stabilise AChE. [Abstract copyright: Copyright © 2018. Published by Elsevier Ltd.]
AB - Acetylcholinesterase (AChE) from Electrophorus electricus (eel) was immobilized on the surface of amino-modified paramagnetic beads to serve as a model for the development, validation and application of a new affinity-based ligand-fishing assay for the discovery of bioactive peptides from complex protein mixtures such as venoms. Nano liquid chromatography-mass spectrometry (nanoLC-MS) was used for the analysis of trapped peptides. Using enzyme-functionalized beads, the ligand-fishing assay was evaluated and optimized using a peptide reference mixture composed of one acetylcholinesterase binder (fasciculin-II) and five non-binders (mambalgin-1, angiotensin-II, bradykinin, cardiotoxin and α-bungarotoxin). As proof of concept, snake venom samples spiked with fasciculin-II demonstrated assay selectivity and sensitivity, fishing the peptide binder from complex venom solutions at concentrations as low as 1.0 μg/mL. As negative controls for method validation, venoms of four different snake species, not known to harbor AChE binding peptides, were screened and no AChE binders were detected. The applicability of the ligand fishing assay was subsequently demonstrated with venom from the black mamba, Jameson's mamba and western green mamba (Dendroaspis spp.), which have previously been reported to contain the AChE binding fasciculins. Unknown peptides (i.e. not fasciculins) with affinity to AChE were recovered from all mamba venoms tested. Tryptic digestion followed by nano-LC-MS analysis of the material recovered from black mamba venom identified the peptide with highest AChE-binding affinity as dendrotoxin-I, a pre-synaptic neurotoxin previously not known to interact with AChE. Co-incubation of AChE with various dendrotoxins in vitro revealed reduced inactivation of AChE activity over time, thus demonstrating that these toxins stabilise AChE. [Abstract copyright: Copyright © 2018. Published by Elsevier Ltd.]
KW - Acetylcholinesterase-binding peptides
KW - Affinity-based protein assay
KW - Dendrotoxin
KW - Ligand fishing assay
KW - Mamba
KW - Mass spectrometry
KW - Snake venoms
U2 - 10.1016/j.toxicon.2018.06.080
DO - 10.1016/j.toxicon.2018.06.080
M3 - Article
SN - 0041-0101
VL - 152
SP - 1
EP - 8
JO - Toxicon
JF - Toxicon
ER -