TY - JOUR
T1 - Preclinical validation of a repurposed metal chelator as an early intervention therapeutic for hemotoxic snakebite
AU - Albulescu, Laura-Oana
AU - Hale, Melissa S.
AU - Ainsworth, Stuart
AU - Alsolaiss, Jaffer
AU - Crittenden, Edouard
AU - Calvete, Juan J.
AU - Evans, Chloe
AU - Wilkinson, Mark
AU - Harrison, Robert
AU - Kool, Jeroen
AU - Casewell, Nick
PY - 2020/5/6
Y1 - 2020/5/6
N2 - Snakebite envenoming causes 138,000 deaths annually, and ~400,000 victims are left with permanent disabilities. Envenoming by saw-scaled vipers (Viperidae: Echis) leads to systemic hemorrhage and coagulopathy, and represents a major cause of snakebite mortality andmorbidity in Africa and Asia. The only specific treatment for snakebite, antivenom, has poor specificity, low affordability, and must be administered in clinical settings due to its intravenous delivery and high rates of adverse reactions. This requirement results in major treatment delays in resource-poor regions and substantially impacts on patient outcomes after envenoming. Here we investigated the value of metal ion chelators as pre-hospital therapeutics for snakebite. Among the tested chelators, dimercaprol (British anti-Lewisite) and its derivative 2,3-dimercapto-1-propanesulfonic acid (DMPS), were found to potently antagonize the activity of Zn2+-dependent snake venom metalloproteinases in vitro. Moreover, DMPS prolonged or conferred complete survival in murine preclinical models of envenoming against a variety of saw-scaled viper venoms. DMPS also considerably extended survival in a ‘challenge and treat’ model, where drug administration was delayed after venom injection, and the oral administration of this chelator provided partial protection against envenoming. Finally, the potential clinical scenario of early oral DMPS therapy combined with a delayed, intravenous dose of conventional antivenom provided prolonged protection against the lethal effects of envenoming in vivo. Our findings demonstrate that the safe and affordable repurposed metal chelator DMPS can effectively neutralize saw-scaled viper venoms in vitro and in vivo and highlights the promise of this drug as an early, pre-hospital, therapeutic intervention for hemotoxic snakebite envenoming.
AB - Snakebite envenoming causes 138,000 deaths annually, and ~400,000 victims are left with permanent disabilities. Envenoming by saw-scaled vipers (Viperidae: Echis) leads to systemic hemorrhage and coagulopathy, and represents a major cause of snakebite mortality andmorbidity in Africa and Asia. The only specific treatment for snakebite, antivenom, has poor specificity, low affordability, and must be administered in clinical settings due to its intravenous delivery and high rates of adverse reactions. This requirement results in major treatment delays in resource-poor regions and substantially impacts on patient outcomes after envenoming. Here we investigated the value of metal ion chelators as pre-hospital therapeutics for snakebite. Among the tested chelators, dimercaprol (British anti-Lewisite) and its derivative 2,3-dimercapto-1-propanesulfonic acid (DMPS), were found to potently antagonize the activity of Zn2+-dependent snake venom metalloproteinases in vitro. Moreover, DMPS prolonged or conferred complete survival in murine preclinical models of envenoming against a variety of saw-scaled viper venoms. DMPS also considerably extended survival in a ‘challenge and treat’ model, where drug administration was delayed after venom injection, and the oral administration of this chelator provided partial protection against envenoming. Finally, the potential clinical scenario of early oral DMPS therapy combined with a delayed, intravenous dose of conventional antivenom provided prolonged protection against the lethal effects of envenoming in vivo. Our findings demonstrate that the safe and affordable repurposed metal chelator DMPS can effectively neutralize saw-scaled viper venoms in vitro and in vivo and highlights the promise of this drug as an early, pre-hospital, therapeutic intervention for hemotoxic snakebite envenoming.
U2 - 10.1126/scitranslmed.aay8314
DO - 10.1126/scitranslmed.aay8314
M3 - Article
SN - 1946-6234
VL - 12
SP - eaay8314
JO - Science Translational Medicine
JF - Science Translational Medicine
IS - 542
M1 - eaay8314
ER -