Larvicidal Activities and Synergistic Effects of Essential Oils against Anopheles funestus and Culex quinquefasciatus (Diptera: Culicidae) from Kisumu, Kenya

Dimitri W. Wangrawa, Jackline Kosgei, Maxwell Machani, James Opala, Silas Agumba, Felix Yaméogo, Dov Borovsky, Eric Ochomo

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Rapid development of resistance in vector mosquitoes to synthetic insecticides is a major challenge for malaria control. The use of plant-derived essential oils (EOs) is an attractive strategy in controlling mosquito populations because they are environmentally safe and may have a lower chance of developing resistance. This study assessed the larvicidal activities of EOs from Lantana camara, Lippia multiflora, Lippia chevalieri, and Cymbopogon schoenanthus against Anopheles funestus and Culex quinquefasciatus. The 3rd-4th instar larvae were tested using a World Health Organization (WHO)-modified protocol to evaluate larval mortality 24 h after exposure to EOs and their binary combinations. Culex quinquefasciatus larvae were more susceptible to EOs than An. funestus larvae. For Cx. quinquefasciatus, the lethal concentrations at 50% mortality (LC50s) of EOs from C. schoenanthus, L. multiflora, L. camara, and L. chevalieri were 23.32, 27.24, 38.54, and 54.11 ppm, respectively; whereas for An. funestus, the EO LC50s were 120.5, 67.5, 49.21, and 105.74 ppm, respectively. Synergistic effects were observed using EOs from C. schoenanthus + L. multiflora (LC50 = 44.05 ppm) on An. funestus, while L. camara + L. chevalieri (LC50 = 33.16 ppm), L. chevalieri + C. schoenanthus (LC50 = 12.08 ppm), and L. multiflora + L. chevalieri (LC50 = 20.61 ppm) were synergistic for Cx. quinquefasciatus. These results indicate the potential of EOs derived from local plants and their binary combinations as botanical larvicides. The EOs could be used as future ecofriendly agents to control these vectors.
Original languageEnglish
Article number8302696
JournalPsyche: Journal of Entomology
Volume2022
DOIs
Publication statusPublished - 1 Jan 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Larvicidal Activities and Synergistic Effects of Essential Oils against Anopheles funestus and Culex quinquefasciatus (Diptera: Culicidae) from Kisumu, Kenya'. Together they form a unique fingerprint.

Cite this