Abstract
Chemical insecticides and natural enemies are important components of integrated pest management (IPM) and are usually incompatible in the field environment. The ladybird beetle Coccinella septempunctata is a generalist predator of aphids worldwide. However, its field application is seriously restricted because it is highly susceptible to insecticides. Here, we constructed CRISPR/Cas9-edited C. septempunctata harboring mutations in the nicotinic acetylcholine receptor α subunit (nAChRα). The C. septempunctata nAChRα (Csnα) knockout strain (Csnα-D7) showed moderate resistance to spinosad (28.56-fold) and imidacloprid (17.28-fold), but no resistance to abamectin. The survival rates of the caged Csnα-D7 C. septempunctata treated with spinosad and imidacloprid at field concentrations were significantly higher than the survival rates of the caged wild-type ladybird beetles treated with field label doses of the same insecticides. The Csnα-D7 strain exhibited normal growth, development, reproduction, and predation performance compared to wild-type ladybird beetles, suggesting a low fitness cost caused by the Csnα mutation. Heritance analysis demonstrated that the resistance to spino-syns in Csnα-D7 was autosomal, incompletely recessive, and closely related to the Csnα mutation. This study significantly enhanced the compatibility of insecticides with natural enemies using CRISPR/Cas9 technology, contributing to the reduction in insecticide usage and improvement of the ecological environment.
| Original language | English |
|---|---|
| Article number | ESP146004404025 |
| Pages (from-to) | 1059-1067 |
| Number of pages | 9 |
| Journal | Entomologia Generalis |
| Volume | 44 |
| Issue number | 4 |
| Early online date | 11 Jul 2024 |
| DOIs | |
| Publication status | Published - 30 Sept 2024 |
Keywords
- Compatibility
- Insecticide
- integrated pest management (IPM)
- neonicotinoid
- seven-spot ladybird