Antimalarial 4(1H)-pyridones bind to the Qisite of cytochromebc1

Michael J. Capper, Paul M. O'Neill, Nicholas Fisher, Richard W. Strange, Darren Moss, Steve Ward, Neil G. Berry, Alexandr S. Lawrenson, S. Samar Hasnain, Giancarlo Biagini, Svetlan V. Antonyuk

Research output: Contribution to journalArticlepeer-review

97 Citations (Scopus)

Abstract

Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Qo site (one of two potential binding sites within cytochrome bc1) using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Qo site but bind at the Qi site. The discovery that these compounds bind at the Qi site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Qi also explains the ability of this class to overcome parasite Qo-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles.

Original languageEnglish
Pages (from-to)755-760
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume112
Issue number3
DOIs
Publication statusPublished - 6 Jan 2015

Keywords

  • Cytochrome bc<inf>1</inf>
  • Drug discovery
  • Malaria
  • Membrane protein
  • Plasmodium falciparum

Fingerprint

Dive into the research topics of 'Antimalarial 4(1H)-pyridones bind to the Qisite of cytochromebc1'. Together they form a unique fingerprint.

Cite this