Abstract
Resistance to third generation cephalosporins and carbapenems in Gram-negative bacteria is chiefly mediated by beta-lactamases including ESBL, AmpC and carbapenemase enzymes. Routine phenotypic detection methods do not provide timely results, and there is a lack of comprehensive molecular panels covering all important markers.
An ESBL/carbapenemase HRM assay (SHV, TEM, CTX-M ESBL families, and NDM, IMP, KPC, VIM and OXA-48-like carbapenemases) and an AmpC HRM assay (16S rDNA control, FOX, MOX, ACC, EBC, CIT and DHA) were designed, and evaluated on 111 Gram-negative isolates with mixed resistance patterns.
The sensitivity for carbapenemase, ESBL and AmpC genes was 96.7% (95%CI:82.8-99.9%), 93.6% (95%CI:85.7-97.9%) and 93.8% (95%CI:82.8-98.7%), respectively with a specificity of 100% (95%CI:95.6-100%), 93.9% (95%CI:79.8-99.3%) and 93.7% (95%CI:84.5-98.2%).
The HRM assays enable the simultaneous detection of the fourteen most important ESBL, carbapenemase and AmpC genes and could be used as a molecular surveillance tool or to hasten detection of AMR for treatment management.
| Original language | English |
|---|---|
| Article number | 115076 |
| Pages (from-to) | 115076 |
| Journal | Diagnostic Microbiology and Infectious Disease |
| Volume | 97 |
| Issue number | 4 |
| Early online date | 8 May 2020 |
| DOIs | |
| Publication status | Published - 1 Aug 2020 |
Keywords
- Antimicrobial resistance
- Carbapenemase
- ESBL
- High resolution melt analysis