A comparison between parametric and non-parametric approaches to the analysis of replicated spatial point patterns

Peter Diggle, Jorge Mateu, Helen E. Clough

Research output: Contribution to journalArticlepeer-review

112 Citations (Scopus)

Abstract

The paper compares non-parametric (design-based) and parametric (model-based) approaches to the analysis of data in the form of replicated spatial point patterns in two or more experimental groups. Basic questions for data of this kind concern estimating the properties of the underlying spatial point process within each experimental group, and comparing the properties between groups. A non-parametric approach, building on work by Diggle et al. (1991), summarizes each pattern by an estimate of the reduced second moment measure or K-function (Ripley (1977)) and compares mean K-functions between experimental groups using a bootstrap testing procedure. A parametric approach fits particular classes of parametric model to the data, uses the model parameter estimates as summaries and tests for differences between groups by comparing fits with and without the assumption of common parameter values across groups. The paper discusses how either approach can be implemented in the specific context of a single-factor replicated experiment and uses simulations to show how the parametric approach can bemore efficientwhen the underlyingmodel assumptions hold, but potentially misleading otherwise.
Original languageEnglish
Pages (from-to)331-343
Number of pages13
JournalAdvances in Applied Probability
Volume32
Issue number2
DOIs
Publication statusPublished - 1 Jan 2000
Externally publishedYes

Keywords

  • Expected significance levels
  • K-function
  • Pseudo-likelihood function
  • Replicated spatial point patterns
  • Spatial analysis of variance

Fingerprint

Dive into the research topics of 'A comparison between parametric and non-parametric approaches to the analysis of replicated spatial point patterns'. Together they form a unique fingerprint.

Cite this